NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice.

Authors:
Plösch T, van der Veen JN, Havinga R, Huijkman NC, Bloks VW, Kuipers F
Affiliation:
Journal:
American journal of physiology. Gastrointestinal and liver physiology

Abstract

The ATP-binding cassette (ABC) half-transporters ABCG5 and ABCG8 heterodimerize into a functional complex that mediates the secretion of plant sterols and cholesterol by hepatocytes into bile and their apical efflux from enterocytes. We addressed the putative rate-controlling role of Abcg5/Abcg8 in hepatobiliary cholesterol excretion in mice during (maximal) stimulation of this process. Despite similar bile salt (BS) excretion rates, basal total sterol and phospholipid (PL) output rates were reduced by 82% and 35%, respectively, in chow-fed Abcg5(-/-) mice compared with wild-type mice. When mice were infused with the hydrophilic BS tauroursodeoxycholate, similar relative increases in bile flow, BS output, PL output, and total sterol output were observed in wild-type, Abcg5(+/-), and Abcg5(-/-) mice. Maximal cholesterol and PL output rates in Abcg5(-/-) mice were only 15% and 69%, respectively, of wild-type values. An infusion of increasing amounts of the hydrophobic BS taurodeoxycholate increased cholesterol excretion by 3.0- and 2.4-fold in wild-type and Abcg5(-/-) mice but rapidly induced cholestasis in Abcg5(-/-) mice. Treatment with the liver X receptor (LXR) agonist T0901317 increased the maximal sterol excretion capacity in wild-type mice (fourfold), concomitant with the induction of Abcg5/Abcg8 expression, but not in Abcg5(-/-) mice. In a separate study, mice were fed chow containing 1% (wt/wt) cholesterol. As expected, hepatic expression of Abcg5 and Abcg8 was strongly induced (fivefold and fourfold) in wild-type but not LXR-alpha-deficient (Lxra(-/-)) mice. Surprisingly, hepatobiliary cholesterol excretion was increased to the same extent, i.e., 2.2-fold in wild-type mice and 2.0-fold in Lxra(-/-) mice, upon cholesterol feeding. Our data confirm that Abcg5, as part of the Abcg5/Abcg8 heterodimer, strongly controls hepatobiliary cholesterol secretion in mice. However, our data demonstrate that Abcg5/Abcg8 heterodimer-independent, inducible routes exist that can significantly contribute to total hepatobiliary cholesterol output.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X