X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Targeted deletion of FATP5 reveals multiple functions in liver metabolism: alterations in hepatic lipid homeostasis.

Authors:
Doege H, Baillie RA, Ortegon AM, Tsang B, Wu Q, Punreddy S, Hirsch D, Watson N, Gimeno RE, Stahl A
Affiliation:
Journal:
Gastroenterology

Abstract

BACKGROUND & AIMS: Fatty acid transport protein 5 (FATP5/Slc27a5) has been shown to be a multifunctional protein that in vitro increases both uptake of fluorescently labeled long-chain fatty acid (LCFA) analogues and bile acid/coenzyme A ligase activity on overexpression. The aim of this study was to further investigate the diverse roles of FATP5 in vivo. METHODS: We studied FATP5 expression and localization in liver of C57BL/6 mice in detail. Furthermore, we created a FATP5 knockout mouse model and characterized changes in hepatic lipid metabolism (this report) and bile metabolism (the accompanying report by Hubbard et al). RESULTS: FATP5 is exclusively expressed by the liver and localized to the basal plasma membrane of hepatocytes, congruent with a role in LCFA uptake from the circulation. Overexpression of FATP5 in mammalian cells increased the uptake of 14C-oleate. Conversely, FATP5 deletion significantly reduced LCFA uptake by hepatocytes isolated from FATP5 knockout animals. Moreover, FATP5 deletion resulted in lower hepatic triglyceride and free fatty acid content despite increased expression of fatty acid synthetase and also caused a redistribution of lipids from liver to other LCFA-metabolizing tissues. Detailed analysis of the hepatic lipom of FATP5 knockout livers showed quantitative and qualitative alterations in line with a decreased uptake of dietary LCFAs and increased de novo synthesis. CONCLUSIONS: Our findings support the hypothesis that efficient hepatocellular uptake of LCFAs, and thus liver lipid homeostasis in general, is largely a protein-mediated process requiring FATP5. These new insights into the physiological role of FATP5 should lead to an improved understanding of liver function and disease.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X