X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin.

Authors:
Janda E, Nevolo M, Lehmann K, Downward J, Beug H, Grieco M
Affiliation:
Journal:
Oncogene

Abstract

Oncogenic Ras interferes with adhesive functions of epithelial cells, but requires tumor growth factor beta (TGFbeta) signaling to cause epithelial-mesenchymal transition (EMT) and tumor progression in model systems. To investigate the mechanisms by which Ras and TGFbeta pathways cooperate in EMT induction, we introduced a tamoxifen-inducible version of Raf-1 (RafER) into fully polarized, mammary epithelial cells (EpH4). EMT characterized by loss of E-cadherin expression and upregulation of invasiveness-promoting genes was induced by TGFbeta plus 4-hydroxytamoxifen (4HT) activation of RafER. Downregulation of E-cadherin by RafER plus TGFbeta was detectable in total cell lysates after 48 h and much earlier in detergent-insoluble fractions of E-cadherin. Both pathways cooperated to strongly enhance endocytosis of E-cadherin, mainly via the clathrin-dependent route. Pulse-chase experiments showed decreased E-cadherin protein stability in cells stimulated with TGFbeta and 4HT and increased E-cadherin half-life in the presence of monensin. Monensin and chloroquine prevented E-cadherin degradation to different extent, but only monensin effectively blocked the loss of E-cadherin from the junctional complexes. Both lysosome inhibitors caused accumulation of E-cadherin vesicles, some of which were positive for Cathepsin D and lysosome-associated membrane protein 1 (LAMP-1). In addition, TGFbeta and mitogen-activated protein kinase hyperactivation synergistically induced E-cadherin ubiquitination, suggesting that the cooperation of Raf and TGFbeta favors lysosomal degradation of E-cadherin instead of its recycling. Our data indicate that early stages of EMT involve cooperative, post-translational downregulation of E-cadherin, whereas loss of E-cadherin via transcriptional repression is a late event in EMT.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X