Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age.

Authors:
Sowell ER, Peterson BS, Kan E, Woods RP, Yoshii J, Bansal R, Xu D, Zhu H, Thompson PM, Toga AW
Affiliation:
Journal:
Cerebral cortex (New York, N.Y. : 1991)

Abstract

Findings from previous magnetic resonance imaging studies of sex differences in gray matter have been inconsistent, with some showing proportionally increased gray matter in women and some showing no differences between the sexes. Regional sex differences in gray matter thickness have not yet been mapped over the entire cortical surface in a large sample of subjects spanning the age range from early childhood to old age. We applied algorithms for cortical pattern matching and techniques for measuring cortical thickness to the structural magnetic resonance images of 176 healthy individuals between the ages of 7 and 87 years. We also mapped localized differences in brain size. Maps of sex differences in cortical thickness revealed thicker cortices in women in right inferior parietal and posterior temporal regions even without correcting for total brain volume. In these regions, the cortical mantle is up to 0.45 mm thicker, on average, in women than in men. Analysis of a subset of 18 female and 18 male subjects matched for age and brain volume confirmed the significance of thicker gray matter in temporal and parietal cortices in females, independent of brain size differences. Further analyses were conducted in the adult subjects where gender differences were evaluated using height as a covariate, and similar sex differences were observed even when body size differences between the sexes were controlled. Together, these results suggest that greater cortical thickness in posterior temporal inferior parietal regions in females relative to males are independent of differences in brain or body size. Age-by-sex interactions were not significant in the temporoparietal region, suggesting that sex differences in these regions are present from at least late childhood and then are maintained throughout life. Male brains were larger than female brains in all locations, though male enlargement was most prominent in the frontal and occipital poles, bilaterally. Given the large sample and the large range of ages studied, these results help to address controversies in the study of central nervous system sexual dimorphisms.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X