Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Visualizing odorant receptor trafficking in living cells down to the single-molecule level.

Jacquier V, Prummer M, Segura JM, Pick H, Vogel H
Proceedings of the National Academy of Sciences of the United States of America


Despite the importance of trafficking for regulating G protein-coupled receptor signaling, for many members of the seven transmembrane helix protein family, such as odorant receptors, little is known about this process in live cells. Here, the complete life cycle of the human odorant receptor OR17-40 was directly monitored in living cells by ensemble and single-molecule imaging, using a double-labeling strategy. While the overall, intracellular trafficking of the receptor was visualized continuously by using a GFP tag, selective imaging of cell surface receptors was achieved by pulse-labeling an acyl carrier protein tag. We found that OR17-40 efficiently translocated to the plasma membrane only at low expression, whereas at higher biosynthesis the receptor accumulated in intracellular compartments. Receptors in the plasma membrane showed high turnover resulting from constitutive internalization along the clathrin pathway, even in the absence of ligand. Single-molecule microscopy allowed monitoring of the early, dynamic processes in odorant receptor signaling. Although mobile receptors initially diffused either freely or within domains of various sizes, binding of an agonist or an antagonist increased partitioning of receptors into small domains of approximately 190 nm, which likely are precursors of clathrin-coated pits. The binding of a ligand, therefore, resulted in modulation of the continuous, constitutive internalization. After endocytosis, receptors were directed to early endosomes for recycling. This unique mechanism of continuous internalization and recycling of OR17-40 might be instrumental in allowing rapid recovery of odor perception.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.