We are currently experiencing intermittent outages following SDSC Maintenance, we apologize for any inconvenience.

NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice.

Authors:
Hoshii T, Takeo T, Nakagata N, Takeya M, Araki K, Yamamura K
Affiliation:
Journal:
Biology of reproduction

Abstract

The roles of the leucine-rich repeat domain containing G protein-coupled receptor (GPCR) 4 (Lgr4), which is one of the orphan GPCRs, were analyzed with the Lgr4 hypomorphic mutant mouse line (Lgr4(Gt)). This homozygous mutant had only one-tenth the normal transcription level; furthermore, 60% of them survived to adulthood. The homozygous male was infertile, showing morphologic abnormalities in both the testes and the epididymides. In the testes, luminal swelling, loss of germinal epithelium in the seminiferous tubules, and rete testis dilation were observed. Cauda epididymidis sperm were immotile. Rete testis dilation was due to a water reabsorption failure caused by a decreased expression of an estrogen receptor (ESR1) and SLC9A3 in the efferent ducts. Although we found differential regulation of ESR1 expression in the efferent ducts and the epididymis, the role of ESR1 in the epididymis remains unclear. The epididymis contained short and dilated tubules and completely lacked its initial segment. In the caput region, we observed multilamination and distortion of the basement membranes (BMs) with an accumulation of laminin. Rupture of swollen epididymal ducts was observed, leading to an invasion of macrophages into the lumen. Male infertility was probably due to the combination of a developmental defect of the epididymis and the rupture of the epithelium resulting in the immotile spermatozoa. These results indicate that Lgr4 has pivotal roles to play in the regulation of ESR1 expression, the control of duct elongation through BM remodeling, and the regional differentiation of the caput epididymidis.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X