We are currently experiencing intermittent outages following SDSC Maintenance, we apologize for any inconvenience.

NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Pharmacologic and functional characterization of malignant hyperthermia in the R163C RyR1 knock-in mouse.

Authors:
Yang T, Riehl J, Esteve E, Matthaei KI, Goth S, Allen PD, Pessah IN, Lopez JR
Affiliation:
Journal:
Anesthesiology

Abstract

BACKGROUND: Malignant hyperthermia is a pharmacogenetic disorder affecting humans, dogs, pigs, and horses. In the majority of human cases and all cases in animals, malignant hyperthermia has been associated with missense mutations in the skeletal ryanodine receptor (RyR1). METHODS: The authors used a "knock-in" targeting vector to create mice carrying the RyR1 R163C malignant hyperthermia mutation. RESULTS: Validation of this new mouse model of human malignant hyperthermia susceptibility includes (1) proof of transcription of the R163C allele and expression of ryanodine receptor protein in R163C heterozygous and R163C homozygous animals; (2) fulminant malignant hyperthermia episodes in R163C heterozygous mice after exposure to 1.25-1.75% halothane or an ambient temperature of 42 degrees C characterized by increased rectal temperature, respiratory rate, and inspiratory effort, with significant blood biochemical changes indicating metabolic acidosis, ending in death and hyperacute rigor mortis; (3) intraperitoneal pretreatment with dantrolene provided 100% protection from the halothane-triggered fulminant malignant hyperthermia episode; (4) significantly increased sensitivity (decreased effective concentration causing 50% of the maximal response) of R163C heterozygous and homozygous myotubes to caffeine, 4-chloro-m-cresol, and K-induced depolarization; (5) R163C heterozygous and homozygous myotubes have a significantly increased resting intracellular Ca concentration compared with wild type; (6) R163C heterozygous sarcoplasmic reticulum membranes have a twofold higher affinity (Kd = 35.4 nm) for [H]ryanodine binding compared with wild type (Kd = 80.1 nm) and a diminished inhibitory regulation by Mg. CONCLUSIONS: Heterozygous R163C mice represent a valid model for studying the mechanisms that cause the human malignant hyperthermia syndrome.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X