NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Lymphokine-activated killer T-cell-originated protein kinase phosphorylation of histone H2AX prevents arsenite-induced apoptosis in RPMI7951 melanoma cells.

Authors:
Zykova TA, Zhu F, Lu C, Higgins L, Tatsumi Y, Abe Y, Bode AM, Dong Z
Affiliation:
Journal:
Clinical cancer research : an official journal of the American Association for Cancer Research

Abstract

PURPOSE: Arsenic is a valuable therapeutic tool in cancer treatment. Lymphokine-activated killer T-cell-originated protein kinase (TOPK) is highly expressed in cancer cells, but its specific function is still unknown. We investigated the role of TOPK in arsenic-induced apoptosis in RPMI7951 human melanoma cells. EXPERIMENTAL DESIGN: Expression of TOPK was evaluated in different melanoma cell lines, and liquid chromatography-tandem mass spectrometry analysis was used to identify proteins binding with TOPK. Immunofluorescence, Western blot, and flow cytometry were used to assess the effect of arsenic on TOPK, histone H2AX, and apoptosis in RPMI7951 cells. RESULTS: Melanoma cell lines expressing high levels of TOPK were more resistant to arsenite (As(3+))-induced apoptosis. As(3+) treatment induced phosphorylation of TOPK and histone H2AX in RPMI7951 human melanoma cells. Liquid chromatography-tandem mass spectrometry results indicated that TOPK could bind with histone H2AX, and in vitro and in vivo assays confirmed that TOPK binds with and phosphorylates histone H2AX. As(3+) treatment caused phosphorylation of TOPK, which colocalized with phosphorylated histone H2AX in the nucleus. TOPK small interfering RNA cells exhibited a decreased phosphorylation of histone H2AX with As(3+) treatment. As(3+)-induced apoptosis was decreased in H2AX(-/-) cells but increased in TOPK small interfering RNA cells. CONCLUSIONS: TOPK binds with histone H2AX and inhibits As(3+)-induced apoptosis through phosphorylation of histone H2AX. Melanoma cell lines with high levels of TOPK are more resistant to As(3+)-induced apoptosis. Therefore, inhibition of TOPK activity combined with As(3+) treatment may be helpful in the treatment of melanomas.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X