X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Phenotypes developed in secretin receptor-null mice indicated a role for secretin in regulating renal water reabsorption.

Authors:
Chu JY, Chung SC, Lam AK, Tam S, Chung SK, Chow BK
Affiliation:
Journal:
Molecular and cellular biology

Abstract

Aquaporin 2 (AQP2) is responsible for regulating the concentration of urine in the collecting tubules of the kidney under the control of vasopressin (Vp). Studies using Vp-deficient Brattleboro rats, however, indicated the existence of substantial Vp-independent mechanisms for membrane insertion, as well as transcriptional regulation, of this water channel. The Vp-independent mechanism(s) is clinically relevant to patients with X-linked nephrogenic diabetes insipidus (NDI) by therapeutically bypassing the dysfunctional Vp receptor. On the basis of studies with secretin receptor-null (SCTR(-/-)) mice, we report here for the first time that mutation of the SCTR gene could lead to mild polydipsia and polyuria. Additionally, SCTR(-/-) mice were shown to have reduced renal expression of AQP2 and AQP4, as well as altered glomerular and tubular morphology, suggesting possible disturbances in the filtration and/or water reabsorption process in these animals. By using SCTR(-/-) mice as controls and comparing them with wild-type animals, we performed both in vivo and in vitro studies that demonstrated a role for secretin in stimulating (i) AQP2 translocation from intracellular vesicles to the plasma membrane in renal medullary tubules and (ii) expression of this water channel under hyperosmotic conditions. The present study therefore provides information for at least one of the Vp-independent mechanisms that modulate the process of renal water reabsorption. Future investigations in this direction should be important in developing therapeutic means for treating NDI patients.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X