Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Molecular cloning and expression of the human interleukin 5 receptor.

Murata Y, Takaki S, Migita M, Kikuchi Y, Tominaga A, Takatsu K
The Journal of experimental medicine


Human interleukin 5 (IL-5) plays an important role in proliferation and differentiation of human eosinophils. We report the isolation of cDNA clones from cDNA libraries of human eosinophils by using murine IL-5 receptor alpha chain cDNA as a probe. Analysis of the predicted amino acid sequence indicated that the human IL-5 receptor has approximately 70% amino acid sequence homology with the murine IL-5 receptor and retains features common to the cytokine receptor superfamily. One cDNA clone encodes a glycoprotein of 420 amino acids (Mr 47,670) with an NH2-terminal hydrophobic region (20 amino acids), a glycosylated extracellular domain (324 amino acids), a transmembrane domain (21 amino acids), and a cytoplasmic domain (55 amino acids). Another cDNA encodes only the extracellular domain of this receptor molecule. Other cDNA clones encode molecules having diversified cytoplasmic domains. COS7 cells transfected with the cDNA expressed a approximately 60-kD protein and bound IL-5 with a single class of affinity (Kd = 250-590 pM). The Kd values were similar to that observed in normal human eosinophils. In contrast to the murine 60-kD alpha chain, which binds IL-5 with low affinity (Kd = approximately 10 nM), the human alpha chain homologue can bind IL-5 with much higher affinity by itself. RNA blot analysis of human cells demonstrated two transcripts (approximately 5.3 and 1.4 kb). Both of them were expressed in normal human eosinophils and in erythroleukemic cell line TF-1, which responds to IL-5. The human IL-5 receptor characterized in this paper is essential for signal transduction, because expression of this molecule in murine IL-3-dependent cell line FDC-P1 allowed these cells to proliferate in response to IL-5.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.