We are currently experiencing intermittent outages following SDSC Maintenance, we apologize for any inconvenience.

NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Homogeneity of intrinsic properties of sexually dimorphic vocal motoneurons in male and female zebra finches.

Authors:
Roberts TF, Wild JM, Kubke MF, Mooney R
Affiliation:
Journal:
The Journal of comparative neurology

Abstract

Sex differences in behavioral repertoires are often reflected in the underlying electrophysiological and morphological properties of motor neurons. Male zebra finches produce long, spectrally complex, learned songs and short calls, whereas female finches only produce short, innate, and spectrally simple calls. In both sexes, vocalizations are produced by using syringeal muscles controlled by motoneurons within the tracheosyringeal part of the hypoglossal motor nucleus (XIIts). We asked whether the sexually dimorphic vocal repertoire of adult zebra finches is paralleled by structural and functional differences in syringeal motoneurons. By using immunohistochemical and intracellular staining methods, we describe sex differences in the morphology of XIIts and its surrounding neuropil (suprahypoglossal region; SH). Although the overall number of XIIts neurons and the proportions of somata/neuropil were not sexually dimorphic, the volumes of both XIIts and SH were larger in males, in part because male XIIts neurons had larger somata. In contrast, female XIIts motoneurons had a more complex dendritic structure than did male neurons, suggesting that the larger volume of the male XIIts is due in part to increased numbers of afferents. Intracellular recordings in brain slices revealed that the intrinsic electrophysiological properties of female XIIts neurons were similar to published values for male XIIts motoneurons. We also show that female neurons received glycinergic inputs from the brainstem respiratory premotor column, similar to those described in males. These findings indicate that male and female zebra finches produce their disparate vocal repertoires using physiologically similar motoneurons. Thus, sites upstream of the motoneuron pool may be the major determinants of sexually dimorphic vocal behaviors in this species.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X