Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex.

Lee JH, Tate CM, You JS, Skalnik DG
The Journal of biological chemistry


We previously identified a mammalian Set1A complex analogous to the yeast Set1/COMPASS histone H3-Lys4 methyltransferase complex (Lee, J.-H., and Skalnik, D. G. (2005) J. Biol. Chem. 280, 41725-41731). Data base analysis indicates that human Set1A protein shares 39% identity with an uncharacterized SET domain protein, KIAA1076, hereafter denoted Set1B. Immunoprecipitation and mass spectrometry reveal that Set1B associates with a approximately 450 kDa complex that contains all five non-catalytic components of the Set1A complex, including CFP1, Rbbp5, Ash2, Wdr5, and Wdr82. These data reveal two human protein complexes that differ only in the identity of the catalytic histone methyltransferase. In vitro assays demonstrate that the Set1B complex is a histone methyltransferase that produces trimethylated histone H3 at Lys(4). Both Set1A and Set1B are widely expressed. Inducible expression of the carboxyl terminus of either Set1A or Set1B decreases steady-state levels of both endogenous Set1A and Set1B protein, but does not alter the expression of the non-catalytic components of the Set1 complexes. A 123-amino acid fragment upstream of the Set1A SET domain is necessary for interaction with CFP1, Ash2, Rbbp5, and Wdr5. This protein domain is also required to mediate feedback inhibition of Set1A and Set1B expression, which is a consequence of reduced Set1A and Set1B stability when not associated with the methyltransferase complex. Confocal microscopy reveals that Set1A and Set1B each localize to a largely non-overlapping set of euchromatic nuclear speckles, suggesting that Set1A and Set1B each bind to a unique set of target genes and thus make non-redundant contributions to the epigenetic control of chromatin structure and gene expression.

BioGRID Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.