NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status.

Authors:
Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R, Lee JH, Löbrich M, Paull TT, Roti Roti JL, Pandita TK
Affiliation:
Journal:
Cancer research

Abstract

All cells have intricately coupled sensing and signaling mechanisms that regulate the cellular outcome following exposure to genotoxic agents such as ionizing radiation (IR). In the IR-induced signaling pathway, specific protein events, such as ataxia-telangiectasia mutated protein (ATM) activation and histone H2AX phosphorylation (gamma-H2AX), are mechanistically well characterized. How these mechanisms can be altered, especially by clinically relevant agents, is not clear. Here we show that hyperthermia, an effective radiosensitizer, can induce several steps associated with IR signaling in cells. Hyperthermia induces gamma-H2AX foci formation similar to foci formed in response to IR exposure, and heat-induced gamma-H2AX foci formation is dependent on ATM but independent of heat shock protein 70 expression. Hyperthermia also enhanced ATM kinase activity and increased cellular ATM autophosphorylation. The hyperthermia-induced increase in ATM phosphorylation was independent of Mre11 function. Similar to IR, hyperthermia also induced MDC1 foci formation; however, it did not induce all of the characteristic signals associated with irradiation because formation of 53BP1 and SMC1 foci was not observed in heated cells but occurred in irradiated cells. Additionally, induction of chromosomal DNA strand breaks was observed in IR-exposed but not in heated cells. These results indicate that hyperthermia activates signaling pathways that overlap with those activated by IR-induced DNA damage. Moreover, prior activation of ATM or other components of the IR-induced signaling pathway by heat may interfere with the normal IR-induced signaling required for chromosomal DNA double-strand break repair, thus resulting in increased cellular radiosensitivity.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X