Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis.

Shroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ, Zoghbi HY


BACKGROUND & AIMS: Math1 (Atoh1) is a basic helix-loop-helix transcription factor important for intestinal secretory cell differentiation. We hypothesized that Math1 is important in cell fate commitment, and therefore mediates proliferative homeostasis and the adaptive response following intestinal resection in the adult intestine. METHODS: We generated mice with an intestine-specific mosaic deletion of Math1 (Math1(Delta intestine)) using the Cre/loxP system. Histologic analysis in adult Math1(Delta intestine) and wild-type littermates at baseline and following small bowel resection or sham surgery was performed. RESULTS: We observed loss of Paneth, goblet, and enteroendocrine cells in Math1-null crypts. In addition, aberrant activation of the Math1 promoter occurred in absorptive enterocytes derived from Math1-null crypts, suggesting a change in cell fate. Proliferation was increased but apoptosis unchanged in Math1-mutant crypts compared to adjacent wild-type crypts. Math1(Delta intestine) mice and wild-type littermates displayed similar physiologic adaptive responses to small bowel resection as measured by changes in body weight and ileal wet weight. In contrast, Math1-mutant crypts displayed a blunted adaptive response compared to adjacent wild-type crypts. CONCLUSIONS: We show that Math1 is essential for adult intestinal secretory cell production, and in its absence cells destined to a secretory phenotype instead adopt an absorptive phenotype. Subtle abnormalities of proliferation within Math1-null crypts in Math1(Delta intestine) mice were identified, together with a substantial defect in the adaptive response of Math1-null crypts following small bowel resection. Our results suggest that Math1 is critical for both cell fate determination within the intestinal epithelium and for regulation of the response to intestinal resection.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.