X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis.

Authors:
Gibb SL, Boston-Howes W, Lavina ZS, Gustincich S, Brown RH, Pasinelli P, Trotti D
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

EAAT2 (excitatory amino acid transporter 2) is a high affinity, Na+-dependent glutamate transporter of glial origin that is essential for the clearance of synaptically released glutamate and prevention of excitotoxicity. During the course of human amyotrophic lateral sclerosis (ALS) and in a transgenic mutant SOD1 mouse model of the disease, expression and activity of EAAT2 is remarkably reduced. We previously showed that some of the mutant SOD1 proteins exposed to oxidative stress inhibit EAAT2 by triggering caspase-3 cleavage of EAAT2 at a single defined locus. This gives rise to two fragments that we termed truncated EAAT2 and COOH terminus of EAAT2 (CTE). In this study, we report that analysis of spinal cord homogenates prepared from mutant G93A-SOD1 mice reveals CTE to be of a higher molecular weight than expected because it is conjugated with SUMO-1. The sumoylated CTE fragment (CTE-SUMO-1) accumulates in the spinal cord of these mice as early as presymptomatic stage (70 days of age) and not in other central nervous system areas unaffected by the disease. The presence and accumulation of CTE-SUMO-1 is specific to ALS mice, since it does not occur in the R6/2 mouse model for Huntington disease. Furthermore, using an astroglial cell line, primary culture of astrocytes, and tissue samples from G93A-SOD1 mice, we show that CTE-SUMO-1 is targeted to promyelocytic leukemia nuclear bodies. Since one of the proposed functions of promyelocytic leukemia nuclear bodies is regulation of gene transcription, we suggest a possible novel mechanism by which the glial glutamate transporter EAAT2 could contribute to the pathology of ALS.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X