X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart.

Authors:
Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi K, Welch MJ, Kelly DP
Affiliation:
Journal:
The Journal of clinical investigation

Abstract

In the diabetic heart, chronic activation of the PPARalpha pathway drives excessive fatty acid (FA) oxidation, lipid accumulation, reduced glucose utilization, and cardiomyopathy. The related nuclear receptor, PPARbeta/delta, is also highly expressed in the heart, yet its function has not been fully delineated. To address its role in myocardial metabolism, we generated transgenic mice with cardiac-specific expression of PPARbeta/delta, driven by the myosin heavy chain (MHC-PPARbeta/delta mice). In striking contrast to MHC-PPARalpha mice, MHC-PPARbeta/delta mice had increased myocardial glucose utilization, did not accumulate myocardial lipid, and had normal cardiac function. Consistent with these observed metabolic phenotypes, we found that expression of genes involved in cellular FA transport were activated by PPARalpha but not by PPARbeta/delta. Conversely, cardiac glucose transport and glycolytic genes were activated in MHC-PPARbeta/delta mice, but repressed in MHC-PPARalpha mice. In reporter assays, we showed that PPARbeta/delta and PPARalpha exerted differential transcriptional control of the GLUT4 promoter, which may explain the observed isotype-specific effects on glucose uptake. Furthermore, myocardial injury due to ischemia/reperfusion injury was significantly reduced in the MHC-PPARbeta/delta mice compared with control or MHC-PPARalpha mice, consistent with an increased capacity for myocardial glucose utilization. These results demonstrate that PPARalpha and PPARbeta/delta drive distinct cardiac metabolic regulatory programs and identify PPARbeta/delta as a potential target for metabolic modulation therapy aimed at cardiac dysfunction caused by diabetes and ischemia.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X