Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Asymmetric involution of the myocardial field drives heart tube formation in zebrafish.

Rohr S, Otten C, Abdelilah-Seyfried S
Circulation research


Many vertebrate organs are derived from monolayered epithelia that undergo morphogenesis to acquire their shape. Whereas asymmetric left/right gene expression within the zebrafish heart field has been well documented, little is known about the tissue movements and cellular changes underlying early cardiac morphogenesis. Here, we demonstrate that asymmetric involution of the myocardium of the right-posterior heart field generates the ventral floor, whereas the noninvoluting left heart field gives rise to the dorsal roof of the primary heart tube. During heart tube formation, asymmetric left/right gene expression within the myocardium correlates with asymmetric tissue morphogenesis. Disruption of left/right gene expression causes randomized myocardial tissue involution. Time-lapse analysis combined with genetic analyses reveals that motility of the myocardial epithelium is a tissue migration process. Our results demonstrate that asymmetric morphogenetic movements of the 2 bilateral myocardial cell populations generate different dorsoventral regions of the zebrafish heart tube. Failure to generate a heart tube does not affect the acquisition of atrial versus ventricular cardiac cell shapes. Therefore, establishment of basic cardiac cell shapes precedes cardiac function. Together, these results provide the framework for the integration of single cell behaviors during the formation of the vertebrate primary heart tube.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.