Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala.

Gianaros PJ, Sheu LK, Matthews KA, Jennings JR, Manuck SB, Hariri AR
The Journal of neuroscience : the official journal of the Society for Neuroscience


Individuals who exhibit exaggerated blood pressure reactions to psychological stressors are at risk for hypertension, ventricular hypertrophy, and premature atherosclerosis; however, the neural systems mediating exaggerated blood pressure reactivity and associated cardiovascular risk in humans remain poorly defined. Animal models indicate that the amygdala orchestrates stressor-evoked blood pressure reactions via reciprocal signaling with corticolimbic and brainstem cardiovascular-regulatory circuits. Based on these models, we used a multimodal neuroimaging approach to determine whether human individual differences in stressor-evoked blood pressure reactivity vary with amygdala activation, gray matter volume, and functional connectivity with corticolimbic and brainstem areas implicated in stressor processing and cardiovascular regulation. We monitored mean arterial pressure (MAP) and concurrent functional magnetic resonance imaging BOLD signal changes in healthy young individuals while they completed a Stroop color-word stressor task, validated previously in epidemiological studies of cardiovascular risk. Individuals exhibiting greater stressor-evoked MAP reactivity showed (1) greater amygdala activation, (2) lower amygdala gray matter volume, and (3) stronger positive functional connectivity between the amygdala and perigenual anterior cingulate cortex and brainstem pons. Individual differences in amygdala activation, gray matter volume, and functional connectivity with corticolimbic and brainstem circuits may partly underpin cardiovascular disease risk by impacting stressor-evoked blood pressure reactivity.

SumsDB Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.