NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

A PY-NLS nuclear targeting signal is required for nuclear localization and function of the Saccharomyces cerevisiae mRNA-binding protein Hrp1.

Authors:
Lange A, Mills RE, Devine SE, Corbett AH
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

Proteins destined for import into the nucleus contain nuclear localization signals (NLSs) that are recognized by import receptors termed karyopherins or importins. Until recently, the only nuclear import sequence that had been well defined and characterized was the classical NLS (cNLS), which is recognized by importin alpha. However, Chook and coworkers (Lee, B. J., Cansizoglu, A. E., Süel, K. E., Louis, T. H., Zhang, Z., and Chook, Y. M. (2006) Cell 126, 543-558) have provided new insight into nuclear targeting with their identification of a novel NLS, termed the PY-NLS, that is recognized by the human karyopherin beta2/transportin (Kapbeta2) receptor. Here, we demonstrate that the PY-NLS is conserved in Saccharomyces cerevisiae and show for the first time that the PY-NLS is a functional nuclear targeting sequence in vivo. The apparent ortholog of Kapbeta2 in yeast, Kap104, has two known cargos, the mRNA-binding proteins Hrp1 and Nab2, which both contain putative PY-NLS-like sequences. We find that the PY-NLS-like sequence within Hrp1, which closely matches the PY-NLS consensus, is both necessary and sufficient for nuclear import and is also required for receptor binding and protein function. In contrast, the PY-NLS-like sequences in Nab2, which vary from the PY-NLS consensus, are not required for proper import or protein function, suggesting that Kap104 may interact with different cargos using multiple mechanisms. Dissection of the PY-NLS consensus reveals that the minimal PY-NLS in yeast consists of the C-terminal portion of the human consensus, R/H/KX(2-5)PY, with upstream basic or hydrophobic residues enhancing the targeting function. Finally, we apply this analysis to a bioinformatic search of the yeast proteome as a preliminary search for new potential Kap104 cargos.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X