NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases.

Authors:
Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H, Spencer B, Rockenstein E, Trejo M, Platoshyn O, Yuan JX, Masliah E
Affiliation:
Journal:
PloS one

Abstract

BACKGROUND: Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) and Parkinson's disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid beta protein (Abeta) oligomers has been identified as one of the central toxic events in AD, accumulation of alpha-synuclein (alpha-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Abeta promotes alpha-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. METHODOLOGY/PRINCIPAL FINDINGS: In order to understand the molecular mechanisms involved in potential Abeta/alpha-syn interactions, immunoblot, molecular modeling, and in vitro studies with alpha-syn and Abeta were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Abeta and alpha-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Abeta binds alpha-syn monomers, homodimers, and trimers, forming hybrid ring-like pentamers. Interactions occurred between the N-terminus of Abeta and the N-terminus and C-terminus of alpha-syn. Interacting alpha-syn and Abeta dimers that dock on the membrane incorporated additional alpha-syn molecules, leading to the formation of more stable pentamers and hexamers that adopt a ring-like structure. Consistent with the simulations, under in vitro cell-free conditions, Abeta interacted with alpha-syn, forming hybrid pore-like oligomers. Moreover, cells expressing alpha-syn and treated with Abeta displayed increased current amplitudes and calcium influx consistent with the formation of cation channels. CONCLUSION/SIGNIFICANCE: These results support the contention that Abeta directly interacts with alpha-syn and stabilized the formation of hybrid nanopores that alter neuronal activity and might contribute to the mechanisms of neurodegeneration in AD and PD. The broader implications of such hybrid interactions might be important to the pathogenesis of other disorders of protein misfolding.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X