• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

PCNA monoubiquitylation and DNA polymerase eta ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae.

7,8-Dihydro-8-oxoguanine (8-oxoG) is an abundant and mutagenic DNA lesion. In Saccharomyces cerevisiae, the 8-oxoG DNA N-glycosylase (Ogg1) acts as the primary defense against 8-oxoG. Here, we present evidence for cooperation between Rad18-Rad6-dependent monoubiquitylation of PCNA at K164, the damage-tolerant DNA polymerase eta and the mismatch repair system (MMR) to prevent 8-oxoG-induced mutagenesis. Preventing PCNA modification at lysine 164 (pol30-K164R) results in a dramatic increase in GC to TA mutations due to endogenous 8-oxoG in Ogg1-deficient cells. In contrast, deletion of RAD5 or SIZ1 has little effect implying that the modification of PCNA relevant for preventing 8-oxoG-induced mutagenesis is monoubiquitin as opposed to polyubiquitin or SUMO. We also report that the ubiquitin-binding domain (UBZ) of Pol eta is essential to prevent 8-oxoG-induced mutagenesis but only in conjunction with a functional PCNA-binding domain (PIP). We propose that PCNA is ubiquitylated during the repair synthesis reaction after the MMR-dependent excision of adenine incorporated opposite to 8-oxoG. Monoubiquitylation of PCNA would favor the recruitment of Pol eta thereby allowing error-free incorporation of dCMP opposite to 8-oxoG. This study suggests that Pol eta and the post-replication repair (PRR) machinery can also prevent mutagenesis at DNA lesions that do not stall replication forks.

Pubmed ID: 19264809

Authors

  • van der Kemp PA
  • de Padula M
  • Burguiere-Slezak G
  • Ulrich HD
  • Boiteux S

Journal

Nucleic acids research

Publication Data

May 7, 2009

Associated Grants

  • Agency: Cancer Research UK, Id:

Mesh Terms

  • Binding Sites
  • Canavanine
  • DNA Glycosylases
  • DNA Repair
  • DNA-Directed DNA Polymerase
  • Gene Deletion
  • Guanine
  • Mutagenesis
  • Mutation
  • Proliferating Cell Nuclear Antigen
  • Protein Structure, Tertiary
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Ubiquitin
  • Ubiquitination