Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Functional equivalence of the zinc finger transcription factors Osr1 and Osr2 in mouse development.

Gao Y, Lan Y, Ovitt CE, Jiang R
Developmental biology


Osr1 and Osr2 are the only mammalian homologs of the Drosophila odd-skipped family developmental regulators. The Osr1 protein contains three zinc-finger motifs whereas Osr2 exists in two isoforms, containing three and five zinc-finger motifs respectively, due to alternative splicing of the transcripts. Targeted null mutations in these genes in mice resulted in distinct phenotypes, with heart and urogenital developmental defects in Osr1(-/-) mice and with cleft palate and open eyelids at birth in Osr2(-/-) mice. To investigate whether these contrasting mutant phenotypes are due to differences in their protein structure or to differential expression patterns, we generated mice in which the endogenous Osr2 coding region was replaced by either Osr1 cDNA or Osr2A cDNA encoding the five-finger isoform. The knockin alleles recapitulated endogenous Osr2 mRNA expression patterns in most tissues and completely rescued cleft palate and cranial skeletal developmental defects of Osr2(-/-) mice. Mice hemizygous or homozygous for either knockin allele exhibited open-eyelids at birth, which correlated with differences in expression patterns between the knockin allele and the endogenous Osr2 gene during eyelid development. Molecular marker analyses in Osr2(-/-) and Osr2(Osr1ki/Osr1ki) mice revealed that Osr2 controls eyelid development through regulation of the Fgf10-Fgfr2 signaling pathway and that Osr1 rescued Osr2 function in maintaining Fgf10 expression during eyelid development in Osr2(Osr1ki/Osr1ki) mice. These results indicate that the distinct functions of Osr1 and Osr2 during mouse development result from evolutionary divergence of their cis regulatory sequences rather than distinct biochemical activities of their protein products.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.