NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability--a point of convergence in parkinsonian neurodegeneration?

Authors:
Gillardon F
Affiliation:
Journal:
Journal of neurochemistry

Abstract

Autosomal dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of late-onset Parkinson's disease. The most prevalent LRRK2(G2019S) mutation has repeatedly been shown to enhance kinase activity and neurotoxicity, however, the molecular mechanisms leading to neurodegeneration remain poorly defined. Here we show that recombinant human LRRK2 preferentially phosphorylates tubulin-beta purified from bovine brain and that phosphorylation is three-fold enhanced by the LRRK2(G2019S) mutation. By tandem mass spectrometry, Thr107 was identified as phosphorylation site which is highly conserved between tubulin-beta family members and also between tubulin-beta genes of different species. LRRK2 was co-immunoprecipitated with tubulin-beta both from wild-type mouse brain and from LRRK2 over-expressing, non-neuronal human embryonic kidney 293 cells. However, an effect of LRRK2 on tubulin phosphorylation and assembly was only detectable in mouse brain samples. In vitro co-incubation of bovine brain tubulins with LRRK2 increased microtubule stability in the presence of microtubule-associated proteins which may explain the reduction in neurite length in LRRK2-deficient neurons in culture. These findings suggest that LRRK2(G2019S)-induced neurodegeneration in Parkinsonian brains may be partly mediated by increased phosphorylation of tubulin-beta and constraining of microtubule dynamics.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X