NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Grp94, the endoplasmic reticulum Hsp90, has a similar solution conformation to cytosolic Hsp90 in the absence of nucleotide.

Authors:
Krukenberg KA, Böttcher UM, Southworth DR, Agard DA
Affiliation:
Journal:
Protein science : a publication of the Protein Society

Abstract

The molecular chaperone, Hsp90, is an essential eukaryotic protein that assists in the maturation and activation of client proteins. Hsp90 function depends upon the binding and hydrolysis of ATP, which causes large conformational rearrangements in the chaperone. Hsp90 is highly conserved from bacteria to eukaryotes, and similar nucleotide-dependent conformations have been demonstrated for the bacterial, yeast, and human proteins. There are, however, important species-specific differences in the ability of nucleotide to shift the conformation from one state to another. Although the role of nucleotide in conformation has been well studied for the cytosolic yeast and human proteins, the conformations found in the absence of nucleotide are less well understood. In contrast to cytosolic Hsp90, crystal structures of the endoplasmic reticulum homolog, Grp94, show the same conformation in the presence of both ADP and AMPPNP. This conformation differs from the yeast AMPPNP-bound crystal state, suggesting that Grp94 may have a different conformational cycle. In this study, we use small angle X-ray scattering and rigid body modeling to study the nucleotide free states of cytosolic yeast and human Hsp90s, as well as mouse Grp94. We show that all three proteins adopt an extended, chair-like conformation distinct from the extended conformation observed for the bacterial Hsp90. For Grp94, we also show that nucleotide causes a small shift toward the crystal state, although the extended state persists as the major population. These results provide the first evidence that Grp94 shares a conformational state with other Hsp90 homologs.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X