• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjögren syndrome.

Endoplasmic reticulum (ER) stress has been linked to the onset and progression of many diseases. SIL1 is an adenine nucleotide exchange factor of the essential ER lumen chaperone HSPA5/BiP that senses ER stress and is involved in protein folding. Mutations in the Sil1 gene have been associated with Marinesco-Sjögren syndrome, hallmarks of which include ataxia and cerebellar atrophy. We have previously shown that loss of SIL1 function in mouse results in ER stress, ubiquitylated protein inclusions, and degeneration of specific Purkinje cells in the cerebellum. Here, we report that overexpression of HYOU1/ORP150, an exchange factor that works in parallel to SIL1, prevents ER stress and rescues neurodegeneration in Sil1(-/-) mice, whereas decreasing expression of HYOU1 exacerbates these phenotypes. In addition, loss of DNAJC3/p58(IPK), a co-chaperone that promotes ATP hydrolysis by BiP, ameliorates ER stress and neurodegeneration in Sil1(-/-) mice. These findings suggest that alterations in the nucleotide exchange cycle of BiP cause ER stress and neurodegeneration in Sil1-deficient mice. Our results present the first evidence of important genetic modifiers of Marinesco-Sjögren syndrome, and provide additional pathways for therapeutic intervention for this, and other ER stress-induced, diseases.

Pubmed ID: 19801575

Authors

  • Zhao L
  • Rosales C
  • Seburn K
  • Ron D
  • Ackerman SL

Journal

Human molecular genetics

Publication Data

January 1, 2010

Associated Grants

  • Agency: NCI NIH HHS, Id: CA34196
  • Agency: NINDS NIH HHS, Id: NS042617
  • Agency: NINDS NIH HHS, Id: R01 NS042613
  • Agency: Howard Hughes Medical Institute, Id:

Mesh Terms

  • Animals
  • Disease Models, Animal
  • Endoplasmic Reticulum
  • Gene Deletion
  • Guanine Nucleotide Exchange Factors
  • HSP40 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • Heterozygote
  • Mice
  • Mice, Transgenic
  • Nerve Degeneration
  • Protein Structure, Quaternary
  • Proteins
  • Purkinje Cells
  • Spinocerebellar Degenerations
  • Transgenes
  • Ubiquitin
  • Unfolded Protein Response