NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells.

Authors:
Morgans CW, Zhang J, Jeffrey BG, Nelson SM, Burke NS, Duvoisin RM, Brown RL
Affiliation:
Journal:
Proceedings of the National Academy of Sciences of the United States of America

Abstract

The ON pathway of the visual system, which detects increases in light intensity, is established at the first retinal synapse between photoreceptors and ON-bipolar cells. Photoreceptors hyperpolarize in response to light and reduce the rate of glutamate release, which in turn causes the depolarization of ON-bipolar cells. This ON-bipolar cell response is mediated by the metabotropic glutamate receptor, mGluR6, which controls the activity of a depolarizing current. Despite intensive research over the past two decades, the molecular identity of the channel that generates this depolarizing current has remained elusive. Here, we present evidence indicating that TRPM1 is necessary for the depolarizing light response of ON-bipolar cells, and further that TRPM1 is a component of the channel that generates this light response. Gene expression profiling revealed that TRPM1 is highly enriched in ON-bipolar cells. In situ hybridization experiments confirmed that TRPM1 mRNA is found in cells of the retinal inner nuclear layer, and immunofluorescent confocal microscopy showed that TRPM1 is localized in the dendrites of ON-bipolar cells in both mouse and macaque retina. The electroretinogram (ERG) of TRPM1-deficient (TRPM1(-/-)) mice had a normal a-wave, but no b-wave, indicating a loss of bipolar cell response. Finally, whole-cell patch-clamp recording from ON-bipolar cells in mouse retinal slices demonstrated that genetic deletion of TRPM1 abolished chemically simulated light responses from rod bipolar cells and dramatically altered the responses of cone ON-bipolar cells. Identification of TRPM1 as a mGluR6-coupled cation channel reveals a key step in vision, expands the role of the TRP channel family in sensory perception, and presents insights into the evolution of vertebrate vision.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X