X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Ligand-mediated activation of an engineered gs g protein-coupled receptor in osteoblasts increases trabecular bone formation.

Authors:
Hsiao EC, Millard SM, Louie A, Huang Y, Conklin BR, Nissenson RA
Affiliation:
Journal:
Molecular endocrinology (Baltimore, Md.)

Abstract

Age-dependent changes in skeletal growth play important roles in regulating skeletal expansion and in the course of many diseases affecting bone. How G protein-coupled receptor (GPCR) signaling affects these changes is poorly understood. Previously, we described a mouse model expressing Rs1, an engineered receptor with constitutive G(s) activity. Rs1 expression in osteoblasts from gestation induced a dramatic age-dependent increase in trabecular bone with features resembling fibrous dysplasia; however, these changes were greatly minimized if Rs1 expression was delayed until after puberty. To further investigate whether ligand-induced activation of the G(s)-GPCR pathway affects bone formation in adult mice, we activated Rs1 in adult mice with the synthetic ligand RS67333 delivered continuously via an osmotic pump or intermittently by daily injections. We found that osteoblasts from adult animals can be stimulated to form large amounts of bone, indicating that adult mice are sensitive to the dramatic bone- forming actions of G(s) signaling in osteoblasts. In addition, our results show that intermittent and continuous activation of Rs1 led to structurally similar but quantitatively different degrees of trabecular bone formation. These results indicate that activation of a G(s)-coupled receptor in osteoblasts of adult animals by either intermittent or continuous ligand administration can increase trabecular bone formation. In addition, osteoblasts located at the bone epiphyses may be more responsive to G(s) signaling than osteoblasts at the bone diaphysis. This model provides a powerful tool for investigating the effects of ligand-activated G(s)-GPCR signaling on dynamic bone growth and remodeling.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X