Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses.

Matsumoto K, Irie F, Mackem S, Yamaguchi Y
Proceedings of the National Academy of Sciences of the United States of America


Multiple hereditary exostoses (MHE) is one of the most common skeletal dysplasias, exhibiting the formation of multiple cartilage-capped bony protrusions (osteochondroma) and characteristic bone deformities. Individuals with MHE carry heterozygous loss-of-function mutations in Ext1 or Ext2, genes which together encode an enzyme essential for heparan sulfate synthesis. Despite the identification of causative genes, the pathogenesis of MHE remains unclear, especially with regard to whether osteochondroma results from loss of heterozygosity of the Ext genes. Hampering elucidation of the pathogenic mechanism of MHE, both Ext1(+/-) and Ext2(+/-) heterozygous mutant mice, which mimic the genetic status of human MHE, are highly resistant to osteochondroma formation, especially in long bones. To address these issues, we created a mouse model in which Ext1 is stochastically inactivated in a chondrocyte-specific manner. We show that these mice develop multiple osteochondromas and characteristic bone deformities in a pattern and a frequency that are almost identical to those of human MHE, suggesting a role for Ext1 LOH in MHE. Surprisingly, however, genotyping and fate mapping analyses reveal that chondrocytes constituting osteochondromas are mixtures of mutant and wild-type cells. Moreover, osteochondromas do not possess many typical neoplastic properties. Together, our results suggest that inactivation of Ext1 in a small fraction of chondrocytes is sufficient for the development of osteochondromas and other skeletal defects associated with MHE. Because the observed osteochondromas in our mouse model do not arise from clonal growth of chondrocytes, they cannot be considered true neoplasms.

MGI Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.