NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization.

Authors:
Nichols RJ, Dzamko N, Morrice NA, Campbell DG, Deak M, Ordureau A, Macartney T, Tong Y, Shen J, Prescott AR, Alessi DR
Affiliation:
Journal:
The Biochemical journal

Abstract

LRRK2 (leucine-rich repeat protein kinase 2) is mutated in a significant number of Parkinson's disease patients, but still little is understood about how it is regulated or functions. In the present study we have demonstrated that 14-3-3 protein isoforms interact with LRRK2. Consistent with this, endogenous LRRK2 isolated from Swiss 3T3 cells or various mouse tissues is associated with endogenous 14-3-3 isoforms. We have established that 14-3-3 binding is mediated by phosphorylation of LRRK2 at two conserved residues (Ser910 and Ser935) located before the leucine-rich repeat domain. Our results suggests that mutation of Ser910 and/or Ser935 to disrupt 14-3-3 binding does not affect intrinsic protein kinase activity, but induces LRRK2 to accumulate within discrete cytoplasmic pools, perhaps resembling inclusion bodies. To investigate links between 14-3-3 binding and Parkinson's disease, we studied how 41 reported mutations of LRRK2 affected 14-3-3 binding and cellular localization. Strikingly, we found that five of the six most common pathogenic mutations (R1441C, R1441G, R1441H, Y1699C and I2020T) display markedly reduced phosphorylation of Ser910/Ser935 thereby disrupting interaction with 14-3-3. We have also demonstrated that Ser910/Ser935 phosphorylation and 14-3-3 binding to endogenous LRRK2 is significantly reduced in tissues of homozygous LRRK2(R1441C) knock-in mice. Consistent with 14-3-3 regulating localization, all of the common pathogenic mutations displaying reduced 14-3-3-binding accumulated within inclusion bodies. We also found that three of the 41 LRRK2 mutations analysed displayed elevated protein kinase activity (R1728H, ~2-fold; G2019S, ~3-fold; and T2031S, ~4-fold). These results provide the first evidence suggesting that 14-3-3 regulates LRRK2 and that disruption of the interaction of LRRK2 with 14-3-3 may be linked to Parkinson's disease.

GO Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X