X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

A humanized Smn gene containing the SMN2 nucleotide alteration in exon 7 mimics SMN2 splicing and the SMA disease phenotype.

Authors:
Gladman JT, Bebee TW, Edwards C, Wang X, Sahenk Z, Rich MM, Chandler DS
Affiliation:
Journal:
Human molecular genetics

Abstract

Proximal spinal muscular atrophy (SMA) is a neurodegenerative disease caused by low levels of the survival motor neuron (SMN) protein. In humans, SMN1 and SMN2 encode the SMN protein. In SMA patients, the SMN1 gene is lost and the remaining SMN2 gene only partially compensates. Mediated by a C>T nucleotide transition in SMN2, the inefficient recognition of exon 7 by the splicing machinery results in low levels of SMN. Because the SMN2 gene is capable of expressing SMN protein, correction of SMN2 splicing is an attractive therapeutic option. Although current mouse models of SMA characterized by Smn knock-out alleles in combination with SMN2 transgenes adequately model the disease phenotype, their complex genetics and short lifespan have hindered the development and testing of therapies aimed at SMN2 splicing correction. Here we show that the mouse and human minigenes are regulated similarly by conserved elements within in exon 7 and its downstream intron. Importantly, the C>T mutation is sufficient to induce exon 7 skipping in the mouse minigene as in the human SMN2. When the mouse Smn gene was humanized to carry the C>T mutation, keeping it under the control of the endogenous promoter, and in the natural genomic context, the resulting mice exhibit exon 7 skipping and mild adult onset SMA characterized by muscle weakness, decreased activity and an alteration of the muscle fibers size. This Smn C>T mouse represents a new model for an adult onset form of SMA (type III/IV) also know as the Kugelberg-Welander disease.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X