X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance.

Authors:
Kang HS, Okamoto K, Kim YS, Takeda Y, Bortner CD, Dang H, Wada T, Xie W, Yang XP, Liao G, Jetten AM
Affiliation:
Journal:
Diabetes

Abstract

OBJECTIVE: The nuclear receptor TAK1/TR4/NR2C2 is expressed in several tissues that are important in the control of energy homeostasis. In this study, we investigate whether TAK1 functions as a regulator of lipid and energy homeostasis and has a role in metabolic syndrome. RESEARCH DESIGN AND METHODS: We generated TAK1-deficient (TAK1⁻(/)⁻) mice to study the function of TAK1 in the development of metabolic syndrome in aged mice and mice fed a high-fat diet (HFD). (Immuno)histochemical, biochemical, and gene expression profile analyses were performed to determine the effect of the loss of TAK1 expression on lipid homeostasis in liver and adipose tissues. In addition, insulin sensitivity, energy expenditure, and adipose-associated inflammation were compared in wild-type (WT) and TAK1⁻(/)⁻ mice fed a HFD. RESULTS: TAK1-deficient (TAK1⁻(/)⁻) mice are resistant to the development of age- and HFD-induced metabolic syndrome. Histo- and biochemical analyses showed significantly lower hepatic triglyceride levels and reduced lipid accumulation in adipose tissue in TAK1⁻(/)⁻ mice compared with WT mice. Gene expression profiling analysis revealed that the expression of several genes encoding proteins involved in lipid uptake and triglyceride synthesis and storage, including Cidea, Cidec, Mogat1, and CD36, was greatly decreased in the liver and primary hepatocytes of TAK1⁻(/)⁻ mice. Restoration of TAK1 expression in TAK1⁻(/)⁻ hepatocytes induced expression of several lipogenic genes. Moreover, TAK1⁻(/)⁻ mice exhibited reduced infiltration of inflammatory cells and expression of inflammatory genes in white adipose tissue, and were resistant to the development of glucose intolerance and insulin resistance. TAK1⁻(/)⁻ mice consume more oxygen and produce more carbon dioxide than WT mice, suggesting increased energy expenditure. CONCLUSIONS: Our data reveal that TAK1 plays a critical role in the regulation of energy and lipid homeostasis, and promotes the development of metabolic syndrome. TAK1 may provide a new therapeutic target in the management of obesity, diabetes, and liver steatosis.

ArrayExpress Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X