Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Phosphorylation of RGS13 by the cyclic AMP-dependent protein kinase inhibits RGS13 degradation.

Authors:
Xie Z, Yang Z, Druey KM
Affiliation:
Journal:
Journal of molecular cell biology

Abstract

Regulators of G-protein signaling (RGS) proteins are scaffolds that control diverse signaling pathways by modulating signalosome formation and by accelerating the GTPase activity of heterotrimeric G proteins. Although expression of many RGS proteins is relatively low in quiescent cells, transcriptional and post-translational responses to environmental cues regulate both their abundance and activity. We found previously that RGS13, one of the smallest RGS proteins in the family, inhibited cyclic AMP-dependent protein kinase (PKA)-induced gene expression through interactions with the transcription factor cAMP-response element-binding (CREB) protein. Here, we show that PKA activation also leads to increased steady-state RGS13 expression through RGS13 phosphorylation, which inhibits RGS13 protein degradation. RGS13 turnover was significantly reduced in cells stimulated with cAMP, which was reversed by expression of the PKA-specific inhibitory peptide PKI. RGS13 phosphorylation was diminished by mutation of an N-terminal Thr residue (T41) identified as a phosphorylation site by mass spectrometry. Mutation of Thr41 in RGS13 to Ala (T41A) reduced steady-state RGS13 levels and its ability to inhibit M2 muscarinic receptor-mediated Erk phosphorylation compared with wild-type RGS13 by attenuating the protective effect of cAMP on RGS13 degradation. RGS13 underwent ubiquitylation, indicating that it is a likely target of the proteasome. These studies are the first to demonstrate post-translational mechanisms controlling the expression of RGS13. Stabilization of RGS13 through PKA-mediated phosphorylation could enhance RGS13 functions, providing negative feedback regulation that promotes cellular desensitization.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X