• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia.

Spinocerebellar ataxias 6 and 7 (SCA6 and SCA7) are neurodegenerative disorders caused by expansion of CAG repeats encoding polyglutamine (polyQ) tracts in CACNA1A, the alpha1A subunit of the P/Q-type calcium channel, and ataxin-7 (ATXN7), a component of a chromatin-remodeling complex, respectively. We hypothesized that finding new protein partners for ATXN7 and CACNA1A would provide insight into the biology of their respective diseases and their relationship to other ataxia-causing proteins. We identified 118 protein interactions for CACNA1A and ATXN7 linking them to other ataxia-causing proteins and the ataxia network. To begin to understand the biological relevance of these protein interactions within the ataxia network, we used OMIM to identify diseases associated with the expanded ataxia network. We then used Medicare patient records to determine if any of these diseases co-occur with hereditary ataxia. We found that patients with ataxia are at 3.03-fold greater risk of these diseases than Medicare patients overall. One of the diseases comorbid with ataxia is macular degeneration (MD). The ataxia network is significantly (P= 7.37 × 10(-5)) enriched for proteins that interact with known MD-causing proteins, forming a MD subnetwork. We found that at least two of the proteins in the MD subnetwork have altered expression in the retina of Ataxin-7(266Q/+) mice suggesting an in vivo functional relationship with ATXN7. Together these data reveal novel protein interactions and suggest potential pathways that can contribute to the pathophysiology of ataxia, MD, and diseases comorbid with ataxia.

Pubmed ID: 21078624

Authors

  • Kahle JJ
  • Gulbahce N
  • Shaw CA
  • Lim J
  • Hill DE
  • Barabási AL
  • Zoghbi HY

Journal

Human molecular genetics

Publication Data

February 1, 2011

Associated Grants

  • Agency: NICHD NIH HHS, Id: P30HD024064
  • Agency: NINDS NIH HHS, Id: R01 NS027699
  • Agency: NEI NIH HHS, Id: T32 EY07102
  • Agency: Howard Hughes Medical Institute, Id:

Mesh Terms

  • Animals
  • Calcium Channels
  • Comorbidity
  • Fluorescent Antibody Technique
  • Gene Expression
  • Gene Knock-In Techniques
  • Humans
  • In Situ Hybridization
  • Macular Degeneration
  • Medical Records
  • Medicare
  • Mice
  • Nerve Tissue Proteins
  • Retina
  • Spinocerebellar Ataxias
  • Trinucleotide Repeat Expansion
  • United States