NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Post-transcriptional regulation in the myo1Δ mutant of Saccharomyces cerevisiae.

Authors:
Rivera-Ruiz ME, Rodríguez-Quiñones JF, Akamine P, Rodríguez-Medina JR
Affiliation:
Journal:
BMC genomics

Abstract

BACKGROUND: Saccharomyces cerevisiae myosin type II-deficient (myo1Δ) strains remain viable and divide, despite the absence of a cytokinetic ring, by activation of the PKC1-dependent cell wall integrity pathway (CWIP). Since the myo1Δ transcriptional fingerprint is a subset of the CWIP fingerprint, the myo1Δ strain may provide a simplified paradigm for cell wall stress survival. RESULTS: To explore the post-transcriptional regulation of the myo1Δ stress response, 1,301 differentially regulated ribosome-bound mRNAs were identified by microarray analysis of which 204 were co-regulated by transcription and translation. Four categories of mRNA were significantly affected - protein biosynthesis, metabolism, carbohydrate metabolism, and unknown functions. Nine genes of the 20 CWIP fingerprint genes were post-transcriptionally regulated. Down and up regulation of selected ribosomal protein and cell wall biosynthesis mRNAs was validated by their distribution in polysomes from wild type and myo1Δ strains. Western blot analysis revealed accumulation of the phosphorylated form of eukaryotic translation initiation factor 2 (eIF2α-P) and a reduction in the steady state levels of the translation initiation factor eIF4Gp in myo1Δ strains. Deletion of GCN2 in myo1Δ abolished eIF2αp phosphorylation, and showed a severe growth defect. The presence of P-bodies in myo1Δ strains suggests that the process of mRNA sequestration is active, however, the three representative down regulated RP mRNAs, RPS8A, RPL3 and RPL7B were present at equivalent levels in Dcp2p-mCh-positive immunoprecipitated fractions from myo1Δ and wild type cells. These same RP mRNAs were also selectively co-precipitated with eIF2α-P in myo1Δ strains. CONCLUSIONS: Quantitative analysis of ribosome-associated mRNAs and their polyribosome distributions suggests selective regulation of mRNA translation efficiency in myo1Δ strains. Inhibition of translation initiation factor eIF2α (eIF2α-P) in these strains was by Gcn2p-dependent phosphorylation. The increase in the levels of eIF2α-P; the genetic interaction between GCN2 and MYO1; and the reduced levels of eIF4Gp suggest that other signaling pathways, in addition to the CWIP, may be important for myo1Δ strain survival. Selective co-immunoprecipitation of RP mRNAs with eIF2α-P in myo1Δ strains suggests a novel mode of translational regulation. These results indicate that post-transcriptional control is important in the myo1Δ stress response and possibly other stresses in yeast.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X