X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding.

Authors:
Dussupt V, Sette P, Bello NF, Javid MP, Nagashima K, Bouamr F
Affiliation:
Journal:
Journal of virology

Abstract

The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind the cellular proteins Tsg101 and Alix, respectively. These interactions are thought to recruit members of the host fission machinery (ESCRT) to facilitate HIV-1 release. Here we report a new role for the p6-adjacent nucleocapsid (NC) domain in HIV-1 release. The mutation of basic residues in NC caused a pronounced decrease in virus release from 293T cells, although NC mutant Gag proteins retained the ability to interact with cellular membranes and RNAs. Remarkably, electron microscopy analyses of these mutants revealed arrested budding particles at the plasma membrane, analogous to those seen following the disruption of the PTAP motif. This result indicated that the basic residues in NC are important for virus budding. When analyzed in physiologically more relevant T-cell lines (Jurkat and CEM), NC mutant viruses remained tethered to the plasma membrane or to each other by a membranous stalk, suggesting membrane fission impairment. Remarkably, NC mutant release defects were alleviated by the coexpression of a Gag protein carrying a wild-type (WT) NC domain but devoid of all L domain motifs and by providing alternative access to the ESCRT pathway, through the in trans expression of the ubiquitin ligase Nedd4.2s. Since NC mutant Gag proteins retained the interaction with Tsg101, we concluded that NC mutant budding arrests might have resulted from the inability of Gag to recruit or utilize members of the host ESCRT machinery that act downstream of Tsg101. Together, these data support a model in which NC plays a critical role in HIV-1 budding.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X