NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia.

Authors:
Chen S, Rong M, Platteau A, Hehre D, Smith H, Ruiz P, Whitsett J, Bancalari E, Wu S
Affiliation:
Journal:
American journal of physiology. Lung cellular and molecular physiology

Abstract

The pathological hallmarks of bronchopulmonary dysplasia (BPD), one of the most common long-term pulmonary complications associated with preterm birth, include arrested alveolarization, abnormal vascular growth, and variable interstitial fibrosis. Severe BPD is often complicated by pulmonary hypertension characterized by excessive pulmonary vascular remodeling and right ventricular hypertrophy that significantly contributes to the mortality and morbidity of these infants. Connective tissue growth factor (CTGF) is a multifunctional protein that coordinates complex biological processes during tissue development and remodeling. We have previously shown that conditional overexpression of CTGF in airway epithelium under the control of the Clara cell secretory protein promoter results in BPD-like architecture in neonatal mice. In this study, we have generated a doxycycline-inducible double transgenic mouse model with overexpression of CTGF in alveolar type II epithelial (AT II) cells under the control of the surfactant protein C promoter. Overexpression of CTGF in neonatal mice caused dramatic macrophage and neutrophil infiltration in alveolar air spaces and perivascular regions. Overexpression of CTGF also significantly decreased alveolarization and vascular development. Furthermore, overexpression of CTGF induced pulmonary vascular remodeling and pulmonary hypertension. Most importantly, we have also demonstrated that these pathological changes are associated with activation of integrin-linked kinase (ILK)/glucose synthesis kinase-3β (GSK-3β)/β-catenin signaling. These data indicate that overexpression of CTGF in AT II cells results in lung pathology similar to those observed in infants with severe BPD and that ILK/GSK-3β/β-catenin signaling may play an important role in the pathogenesis of severe BPD.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X