X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter.

Authors:
Thompson BJ, Jessen T, Henry LK, Field JR, Gamble KL, Gresch PJ, Carneiro AM, Horton RE, Chisnell PJ, Belova Y, McMahon DG, Daws LC, Blakely RD
Affiliation:
Journal:
Proceedings of the National Academy of Sciences of the United States of America

Abstract

Serotonin [i.e., 5-hydroxytryptamine (5-HT)]-targeted antidepressants are in wide use for the treatment of mood disorders, although many patients do not show a response or experience unpleasant side effects. Psychostimulants, such as cocaine and 3,4-methylenedioxymethamphetamine (i.e., "ecstasy"), also impact 5-HT signaling. To help dissect the contribution of 5-HT signaling to the actions of these and other agents, we developed transgenic mice in which high-affinity recognition of multiple antidepressants and cocaine is eliminated. Our animals possess a modified copy of the 5-HT transporter (i.e., SERT, slc6a4) that bears a single amino acid substitution, I172M, proximal to the 5-HT binding site. Although the M172 substitution does not impact the recognition of 5-HT, this mutation disrupts high-affinity binding of many competitive antagonists in transfected cells. Here, we demonstrate that, in M172 knock-in mice, basal SERT protein levels, 5-HT transport rates, and 5-HT levels are normal. However, SERT M172 mice display a substantial loss of sensitivity to the selective 5-HT reuptake inhibitors fluoxetine and citalopram, as well as to cocaine. Through a series of biochemical, electrophysiological, and behavioral assays, we demonstrate the unique properties of this model and establish directly that SERT is the sole protein responsible for selective 5-HT reuptake inhibitor-mediated alterations in 5-HT clearance, in 5-HT1A autoreceptor modulation of raphe neuron firing, and in behaviors used to predict the utility of antidepressants.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X