Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


Mapping the binding sites of human erythrocyte ankyrin for the anion exchanger and spectrin.

Davis LH, Bennett V
The Journal of biological chemistry


This report describes initial characterization of the binding sites of ankyrin for spectrin and the anion exchanger using defined subfragments isolated from purified ankyrin domains. The spectrin-binding domain of ankyrin is comprised of two subdomains: an acidic, proline-rich region (pI = 4) involving the amino-terminal 80 residues from 828 to 908 and a basic region (pI = 8.8) that extends from 898 to 1386. The amino-terminal 70 amino acids of the spectrin-binding domain are critical for association with spectrin, since a subfragment missing this region is only 5% as active as the intact domain in displacing binding of spectrin to inside-out membrane vesicles, while deletion of the first 38 residues of the acidic domain results in a 10-fold reduction in activity. The anion exchanger-binding site is confined to an 89-kDa domain that was isolated and characterized as a globular molecule with approximately 30% alpha-helical configuration. A subfragment of the 89-kDa domain extending from residues 403 to 779 (or possibly 740) retains ability to associate with the anion exchanger. The 89-kDa domain is comprised of a series of tandem repeats of 33 amino acids that extend from residues 35 to 778 (Lux, S., John, K., and Bennett, V. (1990) Nature 344, 36-42). The activity of residues 403-779 demonstrates that the 33-amino acid repeats of the 89-kDa domain are responsible for association between ankyrin and the anion exchanger. The 33-amino acid repeating sequence of ankyrin represents an ancient motif also found in proteins of Drosophila, yeast, and Caenor habditis elegans. The finding that the 33-amino acid repeating sequence is involved in interaction with the anion exchanger implies that this motif may perform a role in molecular recognition in diverse proteins.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.