X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Characterization of NPY Y2 receptor protein expression in the mouse brain. II. Coexistence with NPY, the Y1 receptor, and other neurotransmitter-related molecules.

Authors:
Stanić D, Mulder J, Watanabe M, Hökfelt T
Affiliation:
Journal:
The Journal of comparative neurology

Abstract

Neuropeptide Y (NPY) is widely expressed in the brain and its biological effects are mediated through a variety of receptors. We examined, using immunohistochemistry, expression of the Y2 receptor (R) protein in the adult mouse brain and its association with NPY and the Y1R, as well as a range of additional neurotransmitters and signaling-related molecules, which previously have not been defined. Our main focus was on the hippocampal formation (HiFo), amygdaloid complex, and hypothalamus, considering the known functions of NPY and the wide expression of NPY, Y1R, and Y2R in these regions. Y2R-like immunoreactivity (-LI) was distributed in nerve fibers/terminal endings throughout the brain axis, without apparent colocalization with NPY or the Y1R. Occasional coexistence between NPY- and Y1R-LI was found in the HiFo. Following colchicine treatment, Y2R-LI accumulated in cell bodies that coexpressed γ-aminobutyric acid (GABA) in a population of cells in the amygdaloid complex and lateral septal nucleus, but not in the HiFo. Instead, Y2R-positive nerve terminals appeared to surround GABA-immunoreactive (ir) cells in the HiFo and other neuronal populations, e.g., NPY-ir cells in HiFo and tyrosine hydroxylase-ir cells in the hypothalamus. In the HiFo, Y2R-ir mossy fibers coexpressed GABA, glutamic acid decarboxylase 67 and calbindin, and Y2R-LI was found in the same fibers that contained the presynaptic metabotropic glutamate receptor 2, but not together with any of the three vesicular glutamate transporters. Our findings provide further support that Y2R is mostly presynaptic, and that Y2Rs thus have a modulatory role in mediating presynaptic neurotransmitter release.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X