X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

SPLUNC1 promotes lung innate defense against Mycoplasma pneumoniae infection in mice.

Authors:
Gally F, Di YP, Smith SK, Minor MN, Liu Y, Bratton DL, Frasch SC, Michels NM, Case SR, Chu HW
Affiliation:
Journal:
The American journal of pathology

Abstract

Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is highly expressed in normal airways, but is dramatically decreased in allergic and cigarette smoke exposure settings. We have previously demonstrated SPLUNC1 in vitro antibacterial property against Mycoplasma pneumoniae (Mp). However, its in vivo biological functions remain unclear. The objectives of this study were to determine the in vivo functions of SPLUNC1 following bacterial (eg, Mp) infection, and to examine the underlying mechanisms. We generated SPLUNC1-deficient mice and utilized transgenic mice overexpressing human SPLUNC1 exclusively within the airway epithelium. These mice were infected with Mp and, twenty-four hours post infection, their host defense responses were compared to littermate controls. Mp levels and inflammatory cells increased in the lungs of SPLUNC1(-/-) mice as compared to wild type controls. SPLUNC1 deficiency was shown to contribute to impaired neutrophil activation. In contrast, mice overexpressing hSPLUNC1 exclusively in airway epithelial cells demonstrated lower Mp levels. Furthermore, neutrophil elastase activity was significantly increased in mice overexpressing hSPLUNC1. Lastly, we demonstrated that SPLUNC1 enhanced Mp-induced human neutrophil elastase (HNE) activity, and HNE directly inhibited the growth of Mp. Our findings demonstrate a critical in vivo role of SPLUNC1 in host defense against bacterial infection, and likely provide a novel therapeutic approach to restore impaired lung innate immune responses to bacteria in patients with chronic lung diseases.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X