Neuroscience Information Framework

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

A comprehensive testing protocol for MRI neuroanatomical segmentation techniques: Evaluation of a novel lateral ventricle segmentation method.

Authors:
Kempton MJ, Underwood TS, Brunton S, Stylios F, Schmechtig A, Ettinger U, Smith MS, Lovestone S, Crum WR, Frangou S, Williams SC, Simmons A
Affiliation:
Journal:
NeuroImage

Abstract

Although a wide range of approaches have been developed to automatically assess the volume of brain regions from MRI, the reproducibility of these algorithms across different scanners and pulse sequences, their accuracy in different clinical populations and sensitivity to real changes in brain volume have not always been comprehensively examined. Firstly we present a comprehensive testing protocol which comprises 312 freely available MR images to assess the accuracy, reproducibility and sensitivity of automated brain segmentation techniques. Accuracy is assessed in infants, young adults and patients with Alzheimer's disease in comparison to gold standard measures by expert observers using a manual technique based on Cavalieri's principle. The protocol determines the reliability of segmentation between scanning sessions, different MRI pulse sequences and 1.5T and 3T field strengths and examines their sensitivity to small changes in volume using a large longitudinal dataset. Secondly we apply this testing protocol to a novel algorithm for segmenting the lateral ventricles and compare its performance to the widely used FSL FIRST and FreeSurfer methods. The testing protocol produced quantitative measures of accuracy, reliability and sensitivity of lateral ventricle volume estimates for each segmentation method. The novel algorithm showed high accuracy in all populations (intraclass correlation coefficient, ICC>0.95), good reproducibility between MRI pulse sequences (ICC>0.99) and was sensitive to age related changes in longitudinal data. FreeSurfer demonstrated high accuracy (ICC>0.95), good reproducibility (ICC>0.99) and sensitivity whilst FSL FIRST showed good accuracy in young adults and infants (ICC>0.90) and good reproducibility (ICC=0.98), but was unable to segment ventricular volume in patients with Alzheimer's disease or healthy subjects with large ventricles. Using the same computer system, the novel algorithm and FSL FIRST processed a single MRI image in less than 10min while FreeSurfer took approximately 7h. The testing protocol presented enables the accuracy, reproducibility and sensitivity of different algorithms to be compared. We also demonstrate that the novel segmentation algorithm and FreeSurfer are both effective in determining lateral ventricular volume and are well suited for multicentre and longitudinal MRI studies.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X