NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans.

Authors:
Lapierre LR, Gelino S, Meléndez A, Hansen M
Affiliation:
Journal:
Current biology : CB

Abstract

BACKGROUND: The cellular recycling process of autophagy is emerging as a key player in several longevity pathways in Caenorhabditis elegans. Here, we identify a role for autophagy in long-lived animals lacking a germline and show that autophagy and lipid metabolism work interdependently to modulate aging in this longevity model. RESULTS: Germline removal extends life span in C. elegans via genes such as the lipase LIPL-4; however, less is known of the cellular basis for this life-span extension. Here, we show that germline loss induces autophagy gene expression via the forkhead box A (FOXA) transcription factor PHA-4 and that autophagy is required to extend longevity. We identify a novel link between autophagy and LIPL-4, because autophagy is required to maintain high lipase activity in germline-deficient animals. Reciprocally, lipl-4 is required for autophagy induction. Coordination between autophagy and lipolysis is further supported by the finding that inhibition of TOR (target of rapamycin), a major negative regulator of autophagy, induces lipl-4 expression, and TOR levels are reduced in germline-less animals. TOR may therefore function as a common upstream regulator of both autophagy and lipl-4 expression in germline-less animals. Importantly, we find that the link between autophagy and LIPL-4 is relevant to longevity, because autophagy is induced in animals overexpressing LIPL-4 and autophagy is required for their long life span, recapitulating observations in germline-less animals. CONCLUSIONS: Collectively, our data offer a novel mechanism by which autophagy and the lipase LIPL-4 interdependently modulate aging in germline-deficient C. elegans by maintaining lipid homeostasis to prolong life span.

WormBase Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X