X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Cell cycle regulators interact with pathways that modulate microtubule stability in Saccharomyces cerevisiae.

Authors:
Shohat-Tal A, Eshel D
Affiliation:
Journal:
Eukaryotic cell

Abstract

The integrity of mitosis is dependent upon strict regulation of microtubule stability and dynamics. Although much information has been accumulated on regulators of the microtubule cytoskeleton, our knowledge of the specific pathways involved is still limited. Here we designed genetic screens to identify regulators of microtubule stability that are dispensable in the wild type yet become essential under microtubule-disrupting conditions. We found that the transcriptional cofactor Swi6p and activator Swi4p, as well as the G(2)/M-specific cyclin Clb2p, are required in a microtubule-destabilizing environment. Swi6p and Swi4p can combine as a transcriptional complex, called the SBF complex (SBF for Swi4/6 cell cycle box [SCB]-binding factor) that is functionally homologous to the metazoan DP1/2-E2F complex and that controls the G(1)/S transition through the genes it regulates. We show that Swi6p's contribution to microtubule stability can be either dependent or independent of the SBF complex. The SBF-dependent pathway requires downregulation of SBF complex levels and may thereby reroute the transcriptional program in favor of greater microtubule stability. This pathway can be triggered by overexpression of Fcp1p, a phosphatase in the general transcription machinery, or by expression of an allele of SWI6 that is associated with reduced transcription from SBF-controlled promoters. The SBF-independent pathway is activated by a constitutively nuclear allele of Swi6p. Our results introduce novel roles in microtubule stability for genes whose participation in the process may be masked under normal conditions yet nonetheless acquire a dominant role when microtubule stability is compromised.

BioGRID Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X