X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease.

Authors:
Yoruk B, Gillers BS, Chi NC, Scott IC
Affiliation:
Journal:
Developmental biology

Abstract

Cerebral cavernous malformations (CCMs) are vascular anomalies of the central nervous system that arise due to mutations in genes encoding three unrelated proteins: CCM1 (KRIT1); CCM2 (Malcavernin/OSM) and CCM3 (PDCD10). Both biochemical and mutant studies suggest that CCM1 and CCM2 act as part of a physical complex to regulate vascular morphogenesis and integrity. In contrast, mouse Ccm3 mutant and in vitro cell culture data suggests an independent role for Ccm3. In this study, we sought to use the zebrafish model system to examine for the first time the role of ccm3 in cranial vessel development. We report that inhibition of zebrafish ccm3a/b causes heart and circulation defects distinct from those seen in ccm1 (santa) and ccm2 (valentine) mutants, and leads to a striking dilation and mispatterning of cranial vessels reminiscent of the human disease pathology. ccm3, but not ccm2, defects can be rescued upon overexpression of stk25b, a GCKIII kinase previously shown to interact with CCM3. Morpholino knockdown of the GCKIII gene stk25b results in heart and vasculature defects similar to those seen in ccm3 morphants. Finally, additional loss of ccm3 in ccm2 mutants leads to a synergistic increase in cranial vessel dilation. These results support a model in which CCM3 plays a role distinct from CCM1/2 in CCM pathogenesis, and acts via GCKIII activity to regulate cranial vasculature integrity and development. CCM3/GCKIII activity provides a novel therapeutic target for CCMs, as well as for the modulation of vascular permeability.

ZFIN Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X