Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.


Login to SciCrunch


Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?


NIF LinkOut Portal


MeCP2+/- mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder.

Liao W, Gandal MJ, Ehrlichman RS, Siegel SJ, Carlson GC
Neurobiology of disease


Impairments in cortical sensory processing have been demonstrated in Rett syndrome (RTT) and Autism Spectrum Disorders (ASD) and are thought to contribute to high-order phenotypic deficits. However, underlying pathophysiological mechanisms for these abnormalities are unknown. This study investigated auditory sensory processing in a mouse model of RTT with a heterozygous loss of MeCP2 function. Cortical abnormalities in a number of neuropsychiatric disorders, including ASD are reflected in auditory evoked potentials and fields measured by EEG and MEG. One of these abnormalities, increased latency of cortically sourced components, is associated with language and developmental delay in autism. Additionally, gamma-band abnormalities have recently been identified as an endophenotype of idiopathic autism. Both of these cortical abnormalities are potential clinical endpoints for assessing treatment. While ascribing similar mechanisms of idiopathic ASD to Rett syndrome (RTT) has been controversial, we sought to determine if mouse models of RTT replicate these intermediate phenotypes. Mice heterozygous for the null mutations of the gene MeCP2, were implanted for EEG. In response to auditory stimulation, these mice recapitulated specific latency differences as well as select gamma and beta band abnormalities associated with ASD. MeCP2 disruption is the predominant cause of RTT, and reductions in MeCP2 expression predominate in ASD. This work further suggests a common cortical pathophysiology for RTT and ASD, and indicates that the MeCP2+/- model may be useful for preclinical development targeting specific cortical processing abnormalities in RTT with potential relevance to ASD.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.