NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter.

Authors:
Zahrádka J, van Heusden GP, Sychrová H
Affiliation:
Journal:
Biochimica et biophysica acta

Abstract

BACKGROUND: In yeast, 14-3-3 proteins bind to hundreds of phosphorylated proteins and play a role in the regulation of many processes including tolerance to NaCl. However, the mechanism of 14-3-3 involvement in the cell answer to salt or osmotic stresses is weakly understood. METHODS: We studied the role of the Saccharomyces cerevisiae 14-3-3 homologs Bmh1 and Bmh2 in the regulation of alkali-metal-cation homeostasis using the genetic-interaction approach. Obtained results were confirmed with the Bimolecular-Fluorescence-Complementation method. RESULTS: Deletion of BMH1, encoding the major 14-3-3 isoform, resulted in an increased sensitivity to Na+, Li+ and K+ and to cationic drugs but did not affect membrane potential. This bmh1Δ phenotype was complemented by overexpression of BMH2. Testing the genetic interaction between BMH genes and genes encoding plasma-membrane cation transporters revealed, that 14-3-3 proteins neither interact with the potassium uptake systems, nor with the potassium-specific channel nor with the Na+(K+)-ATPases. Instead, a genetic interaction was identified between BMH1 and NHA1 which encodes an Na+(K+)/H+ antiporter. In addition, a physical interaction between 14-3-3 proteins and the Nha1 antiporter was shown. This interaction does not depend on the phosphorylation of the Nha1 antiporter by Hog1 kinase. Our results uncovered a previously unknown interaction partner of yeast 14-3-3 proteins and provided evidence for the previously hypothesized involvement of Bmh proteins in yeast salt tolerance. GENERAL SIGNIFICANCE: Our results showed for the first time that the yeast 14-3-3 proteins and an alkali-metal-cation efflux system interact and that this interaction enhances the cell survival upon salt stress.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X