X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

A conserved motif in the C-terminal tail of DNA polymerase α tethers primase to the eukaryotic replisome.

Authors:
Kilkenny ML, De Piccoli G, Perera RL, Labib K, Pellegrini L
Affiliation:
Journal:
The Journal of biological chemistry

Abstract

The DNA polymerase α-primase complex forms an essential part of the eukaryotic replisome. The catalytic subunits of primase and pol α synthesize composite RNA-DNA primers that initiate the leading and lagging DNA strands at replication forks. The physical basis and physiological significance of tethering primase to the eukaryotic replisome via pol α remain poorly characterized. We have identified a short conserved motif at the extreme C terminus of pol α that is critical for interaction of the yeast ortholog pol1 with primase. We show that truncation of the C-terminal residues 1452-1468 of Pol1 abrogates the interaction with the primase, as does mutation to alanine of the invariant amino acid Phe(1463). Conversely, a pol1 peptide spanning the last 16 residues binds primase with high affinity, and the equivalent peptide from human Pol α binds primase in an analogous fashion. These in vitro data are mirrored by experiments in yeast cells, as primase does not interact in cell extracts with pol1 that either terminates at residue 1452 or has the F1463A mutation. The ability to disrupt the association between primase and pol α allowed us to assess the physiological significance of primase being tethered to the eukaryotic replisome in this way. We find that the F1463A mutation in Pol1 renders yeast cells dependent on the S phase checkpoint, whereas truncation of Pol1 at amino acid 1452 blocks yeast cell proliferation. These findings indicate that tethering of primase to the replisome by pol α is critical for the normal action of DNA replication forks in eukaryotic cells.

GO Links

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X