NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

The ubiquitin ligase F-box/G-domain protein 1 promotes the degradation of the disease-linked protein torsinA through the ubiquitin-proteasome pathway and macroautophagy.

Authors:
Gordon KL, Glenn KA, Bode N, Wen HM, Paulson HL, Gonzalez-Alegre P
Affiliation:
Journal:
Neuroscience

Abstract

DYT1 dystonia is a dominantly inherited, disabling neurological disorder with low penetrance that is caused by the deletion of a glutamic acid (ΔE) in the protein torsinA. We previously showed that torsinA(wt) is degraded through macroautophagy while torsinA(ΔE) is targeted to the ubiquitin-proteasome pathway (UPP). The different catabolism of torsinA(wt) and (ΔE) potentially modulates torsinA(wt):torsinA(ΔE) stoichiometry. Therefore, gaining a mechanistic understanding on how the protein quality control machinery clears torsinA(ΔE) in neurons may uncover important regulatory steps in disease pathogenesis. Here, we asked whether F-box/G-domain protein 1 (FBG1), a ubiquitin ligase known to degrade neuronal glycoproteins, is implicated in the degradation of torsinA(ΔE) by the UPP. In a first set of studies completed in cultured cells, we show that FBG1 interacts with and influences the steady-state levels of torsinA(wt) and (ΔE). Interestingly, FBG1 achieves this effect promoting the degradation of torsinA not only through the UPP, but also by macroautophagy. To determine the potential clinical significance of these findings, we asked if eliminating expression of Fbg1 triggers a motor phenotype in torsinA(ΔE) knock in (KI) mice, a model of non-manifesting DYT1 mutation carriers. We detected differences in spontaneous locomotion between aged torsinA(ΔE) KI-Fbg1 knock out and control mice. Furthermore, neuronal levels of torsinA were unaltered in Fbg1 null mice, indicating that redundant systems likely compensate in vivo for the absence of this ubiquitin ligase. In summary, our studies support a non-essential role for FBG1 on the degradation of torsinA and uncover a novel link of FBG1 to the autophagy pathway.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X