X

Forgot your Password

If you have forgotten your password, please enter your account email below and we will reset your password and email you the new password.

X

Login to SciCrunch

X

Register an Account

Delete Saved Search

Are you sure you want to delete this saved search?

NO

NIF LinkOut Portal

FILTERS

The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate.

Authors:
Fazius F, Shelest E, Gebhardt P, Brock M
Affiliation:
Journal:
Molecular microbiology

Abstract

Fungi produce α-aminoadipate, a precursor for penicillin and lysine via the α-aminoadipate pathway. Despite the biotechnological importance of this pathway, the essential isomerization of homocitrate via homoaconitate to homoisocitrate has hardly been studied. Therefore, we analysed the role of homoaconitases and aconitases in this isomerization. Although we confirmed an essential contribution of homoaconitases from Saccharomyces cerevisiae and Aspergillus fumigatus, these enzymes only catalysed the interconversion between homoaconitate and homoisocitrate. In contrast, aconitases from fungi and the thermophilic bacterium Thermus thermophilus converted homocitrate to homoaconitate. Additionally, a single aconitase appears essential for energy metabolism, glutamate and lysine biosynthesis in respirating filamentous fungi, but not in the fermenting yeast S. cerevisiae that possesses two contributing aconitases. While yeast Aco1p is essential for the citric acid cycle and, thus, for glutamate synthesis, Aco2p specifically and exclusively contributes to lysine biosynthesis. In contrast, Aco2p homologues present in filamentous fungi were transcribed, but enzymatically inactive, revealed no altered phenotype when deleted and did not complement yeast aconitase mutants. From these results we conclude that the essential requirement of filamentous fungi for respiration versus the preference of yeasts for fermentation may have directed the evolution of aconitases contributing to energy metabolism and lysine biosynthesis.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X