NIF LinkOut Portal

Options
Only Pubmed Central
Include Pubmed Central
Sections
Title
Abstract
Introduction
Methods
Results
Supplement
Appendix
Contributions
Background
Commentary
Funding
Limitations
Caption
FILTERS

ENU mutagenesis reveals that Notchless homolog 1 (Drosophila) affects Cdkn1a and several members of the Wnt pathway during murine pre-implantation development.

Authors:
Lossie AC, Lo CL, Baumgarner KM, Cramer MJ, Garner JP, Justice MJ
Affiliation:
Journal:
BMC genetics

Abstract

BACKGROUND: Our interests lie in determining the genes and genetic pathways that are important for establishing and maintaining maternal-fetal interactions during pregnancy. Mutation analysis targeted to a 34 Mb domain flanked by Trp53 and Wnt3 demonstrates that this region of mouse chromosome 11 contains a large number of essential genes. Two mutant alleles (l11Jus1 and l11Jus4), which fall into the same complementation group, survive through implantation but fail prior to gastrulation. RESULTS: Through a positional cloning strategy, we discovered that these homozygous mutant alleles contain non-conservative missense mutations in the Notchless homolog 1 (Drosophila) (Nle1) gene. NLE1 is a member of the large WD40-repeat protein family, and is thought to signal via the canonical NOTCH pathway in vertebrates. However, the phenotype of the Nle1 mutant mice is much more severe than single Notch receptor mutations or even in animals in which NOTCH signaling is blocked. To test the hypothesis that NLE1 functions in multiple signaling pathways during pre-implantation development, we examined expression of multiple Notch downstream target genes, as well as select members of the Wnt pathway in wild-type and mutant embryos. We did not detect altered expression of any primary members of the Notch pathway or in Notch downstream target genes. However, our data reveal that Cdkn1a, a NOTCH target, was upregulated in Nle1 mutants, while several members of the Wnt pathway are downregulated. In addition, we found that Nle1 mutant embryos undergo caspase-mediated apoptosis as hatched blastocysts, but not as morulae or blastocysts. CONCLUSIONS: Taken together, these results uncover potential novel functions for NLE1 in the WNT and CDKN1A pathways during embryonic development in mammals.

  1. Welcome

    Welcome to NIF. Explore available research resources: data, tools and materials, from across the web

  2. Community Resources

    Search for resources specially selected for NIF community

  3. More Resources

    Search across hundreds of additional biomedical databases

  4. Literature

    Search Pub Med abstracts and full text from PubMed Central

  5. Insert your Query

    Enter your search terms here and hit return. Search results for the selected tab will be returned.

  6. Join the Community

    Click here to login or register and join this community.

  7. Categories

    Narrow your search by selecting a category. For additional help in searching, view our tutorials.

  8. Query Info

    Displays the total number of search results. Provides additional information on search terms, e.g., automated query expansions, and any included categories or facets. Expansions, filters and facets can be removed by clicking on the X. Clicking on the + restores them.

  9. Search Results

    Displays individual records and a brief description. Click on the icons below each record to explore additional display options.

X